

GM76C28 CMOS 16K-BIT STATIC RAM

Description

The GM76C28 $_{10/12}$ is a 2,048 words \times 8 bits asynchronous, static, random access memory on a monolithic CMOS chip. Its very low standby power requirement makes it ideal for applications requiring non-volatile storage with back-up batteries. The asynchronous and static nature of the memory requires no external clock or refreshing circuit. Both the input and output ports are TTL compatible and the 3-state output allows easy expansion of memory capacity.

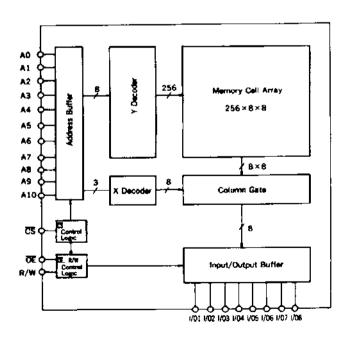
Features

• Access timeGM76C28-10 100ns (Max)

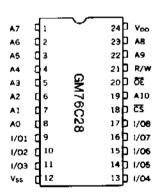
GM76C28-12 120ns (Max)

• Low supply current ·······standby : 1µA (Typ)

operation: GM76C28-10 30mA (Typ)


Complete static operation

GM76C28-12 25mA (Typ)


• Single power supply -----5V ± 10%

- TTL compatible inputs and outputs
- · 3-state output with wired-OR capability
- Non-volatile storage with back-up batteries

Schematic Diagram

Pin Configuration

A0 to A10	Address Input
R/W	Read/Write
<u>DE</u>	Output Enable
CS .	Chip Select
I/01 to 8	Data input/Output
Voo	Power Supply (+5V)
Vss	Power Supply (0V)

HEAD OFFICE

#20, YOIDO-DONG, YEONG DEUNG PO-GUI SEOUL, KOREA, 150 YOIDO P.O. BOX 335 SEOUL KOREA

TEL_INTERNATIONAL 787 3811~3819 DOMESTIC 787-3801~3807, INFORMATION 787-3114

TLX. GSRADIO K23751 SEDUL FAX. 787-3400 SUNNYVALE

#1130 FAST ARQUES AVENUE SUNNYVALF, CA94086

TEL. (408) 737 8575 TLX: 176835 LKYGS SUVL FAX: (408) 737-0186

Absolute Maximum Ratings

 $(V_{SS} = 0V)$

Parameter	Symbol	Ratings	Unit
Supply voltage	V _{DD}	-0.5 to 7.0	V
Input voltage*	V _t	-0.5 to 7.0	· · · · · · · · · · · · · · · · · ·
Input/output voltage*	V _{I/O}	-0.5 to V _{DD} +0.3	
Power dissipation	PD	1.0	W
Operating temperature	Top	0 to 70	· · ·
Storage temperature	Tstg	-65 to 150	Ċ
Soldering temp. & time	Tsol	260°C, 10s (at lead)	_

 $\bullet V_{I_1} V_{I/O} = -1.0V$ when pulse width is 50 ns

Recommended Operating Conditions

 $(Ta = 0 \text{ to } 70^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply voltage	V _{DD}		4.5	5.0	5.5	V
Supply Voltage	V _{SS}		0	0	. 0	V
Input voltage	V _{IH}		2.2	3.5	V _{DD} + 0.3	V
mput voitage	V _{IL} .		-0.3*		0.8	V

*Vic(Min)= -1.0V when pulse width is 50ns

Electrical Characteristics DC Electrical Characteristics

 $(V_{DD} = 5V \pm 10\%, V_{SS} = 0V, Ta = 0 to 70^{\circ}C)$

Parameter	Symbol	Conditions	GM76C28-1		8-10	GM7	8-12	1.1-14		
· Granital	Conditions		Min	in Typ* Max		Min Typ* M		Max	Unit	
Input leakage current	lu	$V_{DD} = 5.5V, V_1 = 0 \text{ to } V_{DD}$	-1		1	-1	_	1	μA	
Output leakage current	ILO	$\overline{CS} = V_{IH}$, or $\overline{OE} = V_{IH}$, $V_{I O} = 0$ to V_{OO}	-1		1	-1		<u> </u>	μΑ	
Operating supply current	Ippo	$\overline{CS} = V_{IL}, I_{I/O} = 0 mA$		30	60		25	50	mA	
	I _{D001}	$V_{IH} = 3.5V$, $V_{IL} = 0.6V$, $I_{I/O} = 0$ mA		16			16		mA	
Average operating current	l _{DDA}	Min. cycle, duty = 100%, I _{MO} = 0mA		30	60		25	50	mA	
Standby supply current	loos	CS=V _{IH}		1.5	3.0		1.5	3.0	mA	
Standby Supply Corrent	I _{DDS1}	$\overline{CS} = V_{DD} - 0.2V$		1	50		1	50	μA	
Output voltage	Voc	$1_{OL} = 4.0 \text{mA}$		٠-	0.4		_	0.4	٧	
Outhor sorrage	V _{OH}	$1_{OH} = -1.0 \text{mA}$	2.4			2.4		_	٧	

Typical values are for reference, with V_{b0} = 5V and Ta = 25°C assumed

Terminal Capacitance

 $(f = 1MHz, Ta = 25^{\circ}C)$

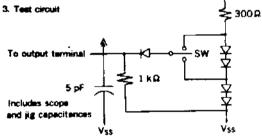
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input capacitance	C ₁	$V_i = 0V$		4	6	рF
I/O capacitance	CLO	V _{I/O} = 0 V	i	6	8	pF

AC Electrical Characteristics

Read Cycle

 $(V_{OD} = 5V \pm 10\%, V_{SS} = 0V, Ta = 0 to 70^{\circ}C)$

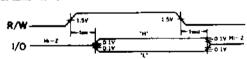
Parameter	Symbol Conditions	Conditions	GM76C28-10		GM76C28-12		1 t=:x
			Min	Max	Min	Max	Unit
Read cycle time	tac	<u></u>	100		120		ns
Address access time	tacc	•1		100		120	ns
CS access time	tacs			100		120	ns
CS output setup time	t _{CLZ}	* 2	10	<u> </u>	10		ns
OE access time	toE	<u>* </u>		55		60	ns
OE output setup time	toLZ	<u></u>	, 5		10	-	ns
CS output floating	t _{CHZ}	+ 2	0	40	0	40	ns
OE output floating	tonz		C	40	0	40	ns
Output hold time	t _{QH}	<u>*1</u>	10	 -	10		ns

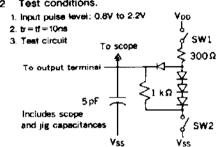

2

Write Cycle

 $(V_{DD} = 5V \pm 10\%, V_{SS} = 0V, Ta = 0 \text{ to } 70^{\circ}\text{C})$

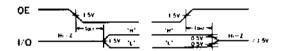
			GM760	C28-10	GM76C28-12		Unit
Parameter	Symbol Conditions		Min	Min Max		Min Max	
Write cycle time	two		100	<u> </u>	120		ns
Chip select time (CS)	tcw	* 1	80		85		ns
Address enable time	taw		80		85		กร
Address setup time	tas		0	l	0		ns
Write pulse width	twe		65		70	_	ns
OE output floating	tonz	* 2	0	40	0	40	ns
R/W output floating	twnz	+3	0	45	0	50	ns
Input data setup time	tow		45		50		ns
Address hold time	twa	•1	5		5		_ ns
Input data hold time	toн		C		0		ns
R/W output setup time	tow	*3	5	[_	10		ns_

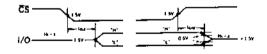

- *1 Test conditions.
 - 1. Input pulse level: 0.8V to 2.2V
 - 2. tr = tf = 10ne
 - 3. Input/output timing reference level: 1.5V
 - 4. Output load: hm.+Cc=100pF
- •3 Test conditions.
 - 1, input pulse level: 0.8V to 2.2V
 - 2. w=#=10ns

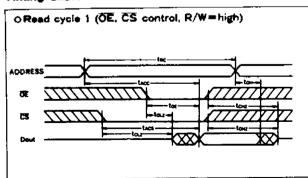

Voc

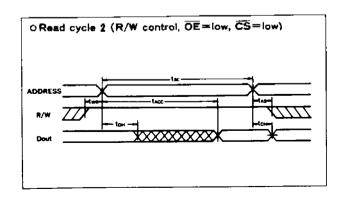
- OSW is set to the Voo side when measuring Hi-z-high and high-Hi-z of
- O SW is set to the Vis side when measuring Hi-z-low and low-Hi-z of

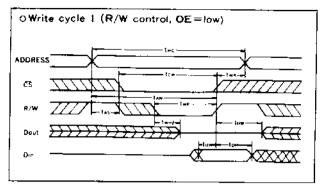
Quiput tumon tumoff times

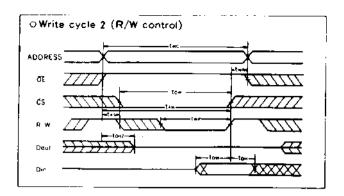


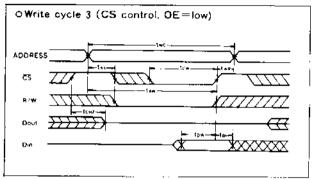

*2 Test conditions.

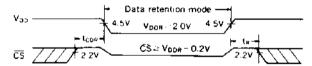

- O Both SW1 and SW2 are closed when measuring toxz or toxz.
- o SWI is open and SW2 is closed when measuring Hi-z-high of toxz or toxz.
- O SWI is closed and SW2 is open when measuring Hi-z-low of to.z or to.z.


Output tumon tumoff times






Timing Chart


Data Retention Characteristics with Low Voltage Power Supply

(Ta = 0 to 70°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V_{DDR}	CS ≥ V _{DDR} = 0.2V	2.0		5.5	V
Data retention current	IDDR	V _{DD} =3.0V, CS≥2.8V		<u> </u>	25	μA
Chip select data hold time	todr	. Defer to the figure below	0	ļ · <u>-</u>	_	ns
Operation recovery time	t _R	- Refer to the figure below.	t _{RC} *	· –		f · — — — — — — — — — — — — — — — — — —

. tec : read cycle time

Data retention timing

Note: When retaining data in standby mode, supply voltage can be lowered within a certain range. Read or write cycle cannot be performed while the supply voltage is low.

Functions

Truth Table

CS	ŌĒ	R/W	A0 to A10	DATA I/O	Mode	IDD
Н				Hi-Z	Unselected	loos, loosi
L	L	H	Stable	Output data	Read	Ippo
L	Н	L	Stable	Input data	Write	IDDO
L	L	L	Stable	Input data	Write	I _{DDO}

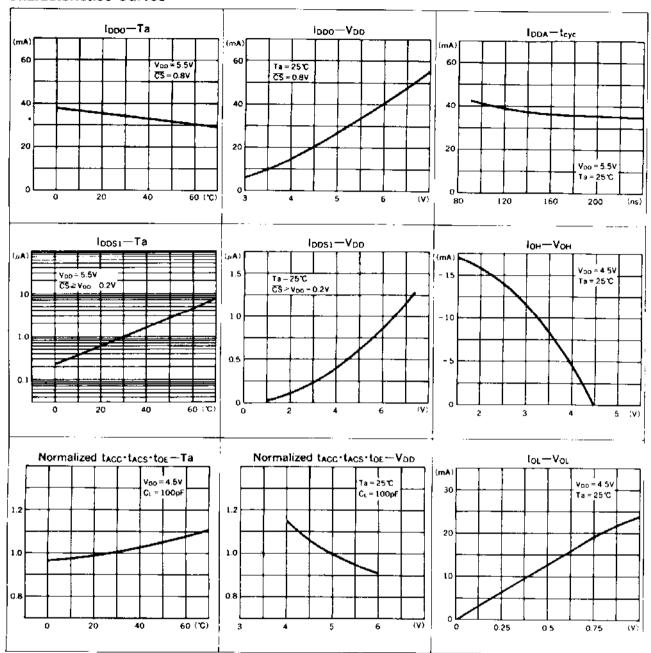
X: "H" or "L", -: "H", "L" or "Hi-Z"

Reading Data

Data can be read out if an address is set while $\overline{\text{CS}}$ and $\overline{\text{OE}}$ are held low, and R/W is held high.

Writing Data

There are following three ways of writing data.


- (1) Hold $\overline{\text{CS}}$ low, set the address, and apply a low pulse to R/W.
- (2) Hold R/W low, set the address, and apply a low pulse to CS.
- (3) Set the address, then apply low pulses to both $\overline{\text{CS}}$ and R/W.

In any case, data from the DATA I/O terminal is fetched into the GM76C28 $_{10/12}$ at the last transition of a section in which both $\overline{\text{CS}}$ and R/W are low. Because the DATA I/O terminal is in high-impedance state when $\overline{\text{CS}}$ or $\overline{\text{OE}}$ is high, or R/W is low, contention of data driver on the bus and memory output is avoided.

Standby Mode

When $\overline{\text{CS}}$ is high, GM76C28 is in standby mode and only retains the data. At this time the DATA I/O terminal is in high-impedance state and input of an address, R/W signal, or data is prohibited. When $\overline{\text{CS}}$ is above $V_{DD}-0.2V$, current flow within the GM76C28 chip is only that in the high-resistance portion of memory cells and leakage current.

Characteristics Curves

