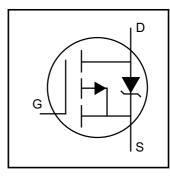
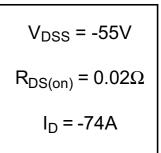
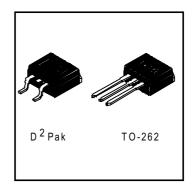
International TOR Rectifier

IRF4905S/L

HEXFET® Power MOSFET


- Advanced Process Technology
- Surface Mount (IRF4905S)
- Low-profile through-hole (IRF4905L)
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated


Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF4905L) is available for low-profile applications.

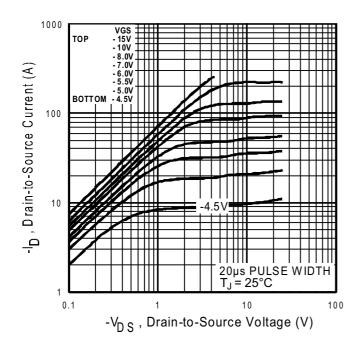
Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V ^⑤	-74	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V ^⑤	-52	A
I _{DM}	Pulsed Drain Current ⊕⑤	-260	
P _D @T _A = 25°C	Power Dissipation	3.8	W
$P_D @ T_C = 25 ° C$	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②⑤	930	mJ
I _{AR}	Avalanche Current①	-38	А
E _{AR}	Repetitive Avalanche Energy①	20	mJ
dv/dt	Peak Diode Recovery dv/dt ③⑤	-5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	0000
R _{eJA}	Junction-to-Ambient (PCB Mounted,steady-state)**		40	°C/W

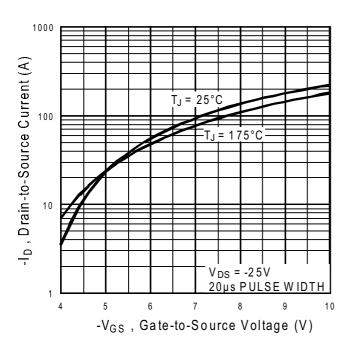
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.05		V/°C	Reference to 25°C, I _D = -1mA [©]
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.02	Ω	V _{GS} = -10V, I _D = -38A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
g _{fs}	Forward Transconductance	21			S	V _{DS} = -25V, I _D = -38A ^⑤
Inno	Drain-to-Source Leakage Current			-25	μΑ	$V_{DS} = -55V$, $V_{GS} = 0V$
I _{DSS}	Brain to Oddroe Leakage Carrent			-250	μΛ	$V_{DS} = -44V$, $V_{GS} = 0V$, $T_{J} = 150$ °C
1	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA ·	V _{GS} = -20V
Qg	Total Gate Charge			180		I _D = -38A
Q _{gs}	Gate-to-Source Charge			32	nC	$V_{DS} = -44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			86		V _{GS} = -10V, See Fig. 6 and 13 ⊕ ⑤
t _{d(on)}	Turn-On Delay Time		18			$V_{DD} = -28V$
t _r	Rise Time		99]	$I_{D} = -38A$
t _{d(off)}	Turn-Off Delay Time		61		ns	$R_G = 2.5\Omega$
t _f	Fall Time		96			R_D = 0.72 Ω , See Fig. 10 \oplus
L _S	Internal Source Inductance		7.5		nH	Between lead,
<u>-</u> S					1111	and center of die contact
C _{iss}	Input Capacitance		3400			V _{GS} = 0V
Coss	Output Capacitance		1400		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		640			$f = 1.0MHz$, See Fig. 5 \degree

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			74		MOSFET symbol
	(Body Diode)			-74	A	showing the
I _{SM}	Pulsed Source Current			-260] ^`	integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25$ °C, $I_S = -38A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		89	130	ns	T _J = 25°C, I _F = -38A
Q _{rr}	Reverse Recovery Charge		230	350	nC	di/dt = -100A/µs ④⑤
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:


- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ② Starting T_J = 25°C, L = 1.3mH R_G = 25 Ω , I_{AS} = -38A. (See Figure 12)
- © Uses IRF4905 data and test conditions
- $\ \Im$ $I_{SD} \le$ -38A, di/dt \le -270A/µs, $V_{DD} \le V_{(BR)DSS},$ $T_{J} \le$ 175°C
- ** When mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994.

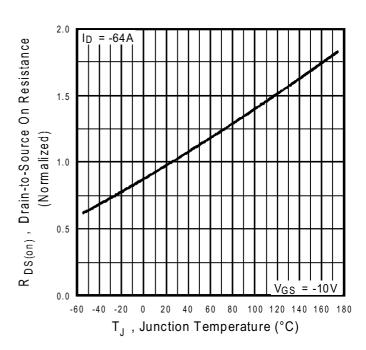
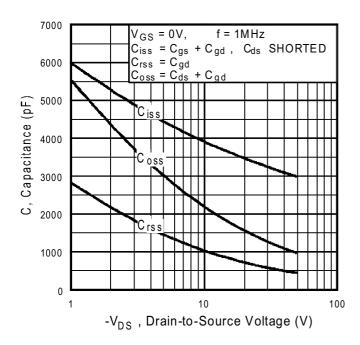

1000
TOP VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
BOTTOM -4.5V
-5.0V
BOTTOM -4.5V
-10
-VD S , Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics


Fig 2. Typical Output Characteristics

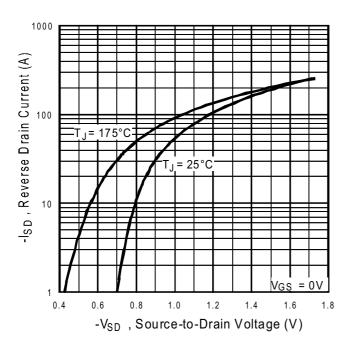



Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

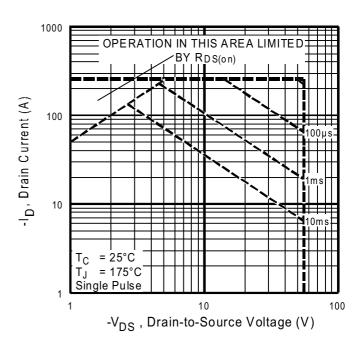
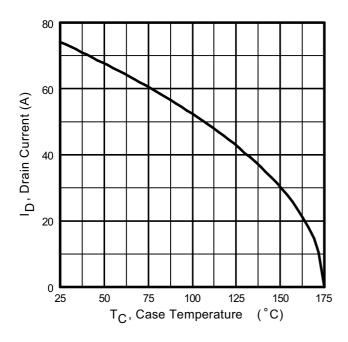



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Gurrent vs. Case Temperature

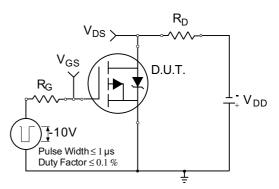


Fig 10a. Switching Time Test Circuit

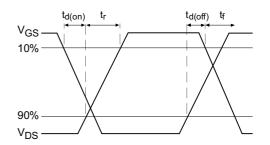


Fig 10b. Switching Time Waveforms

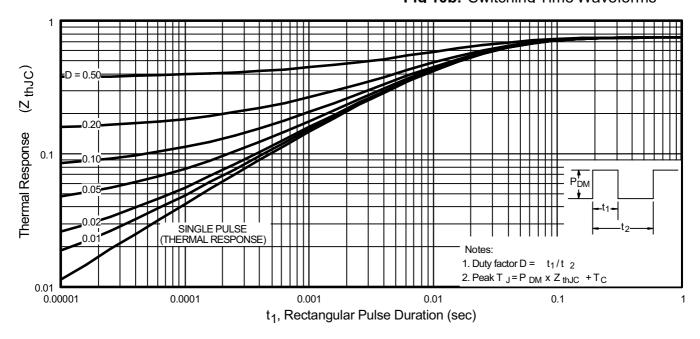


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

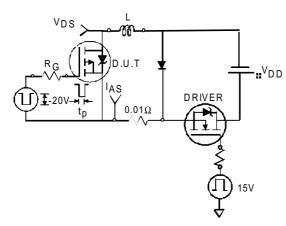


Fig 12a. Unclamped Inductive Test Circuit

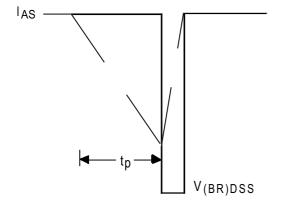


Fig 12b. Unclamped Inductive Waveforms

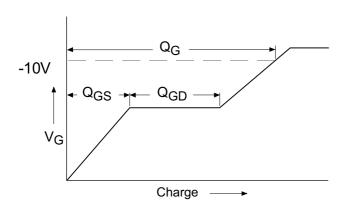


Fig 13a. Basic Gate Charge Waveform

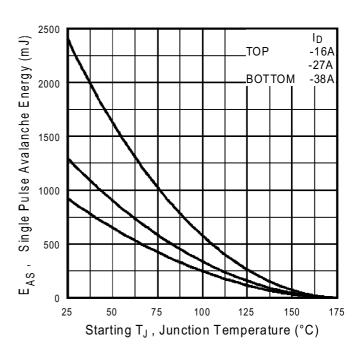


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

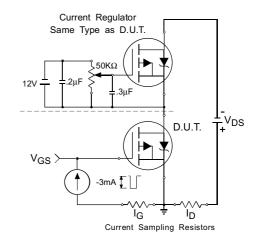
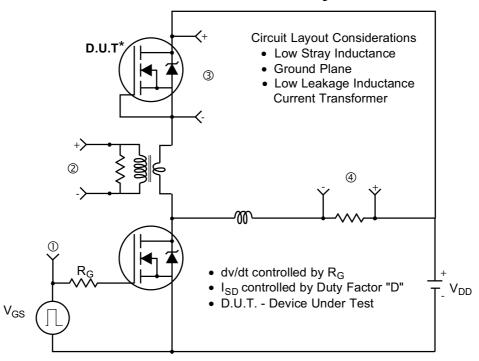
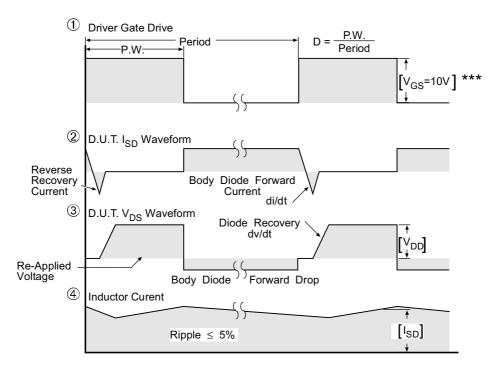
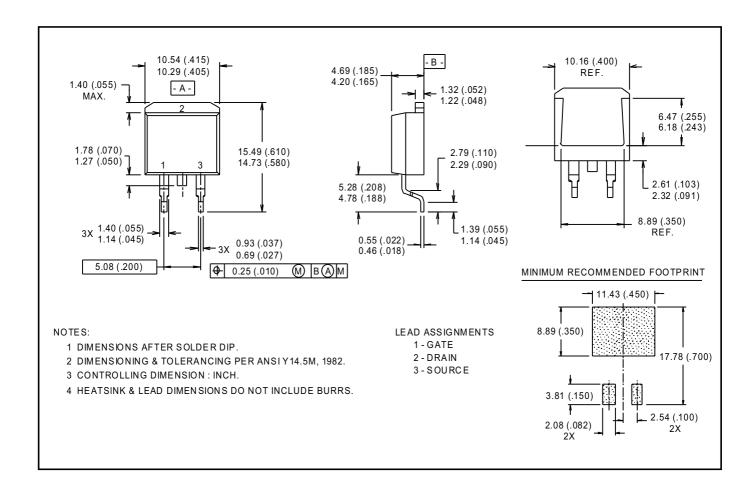




Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit


* Reverse Polarity of D.U.T for P-Channel

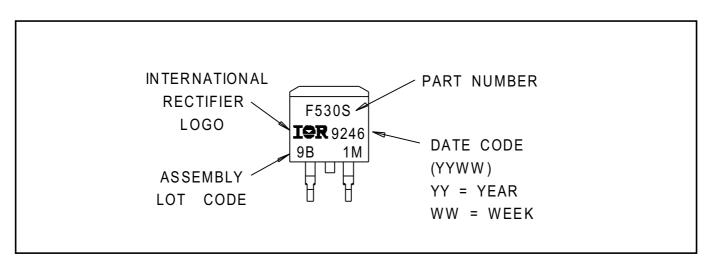
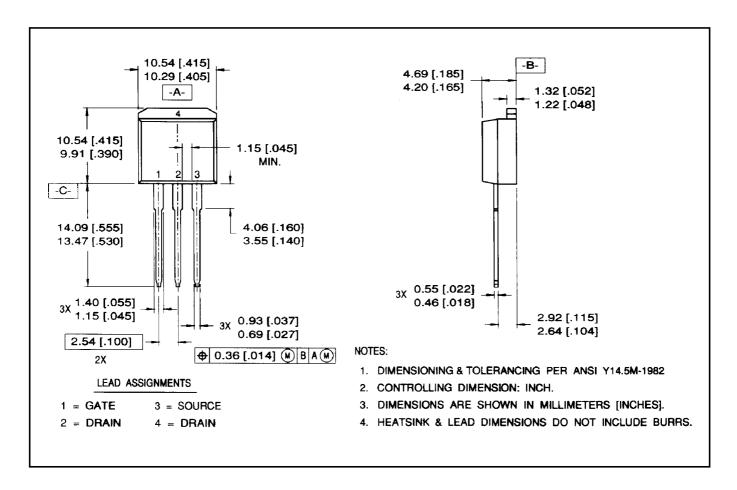
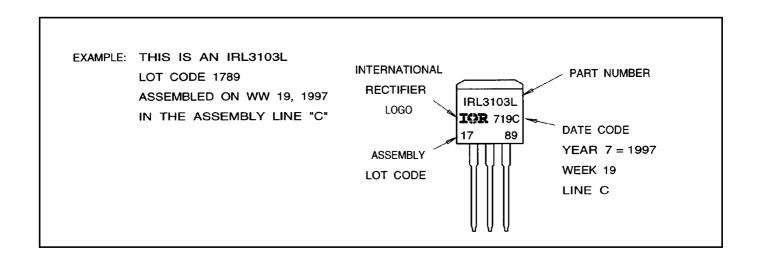

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

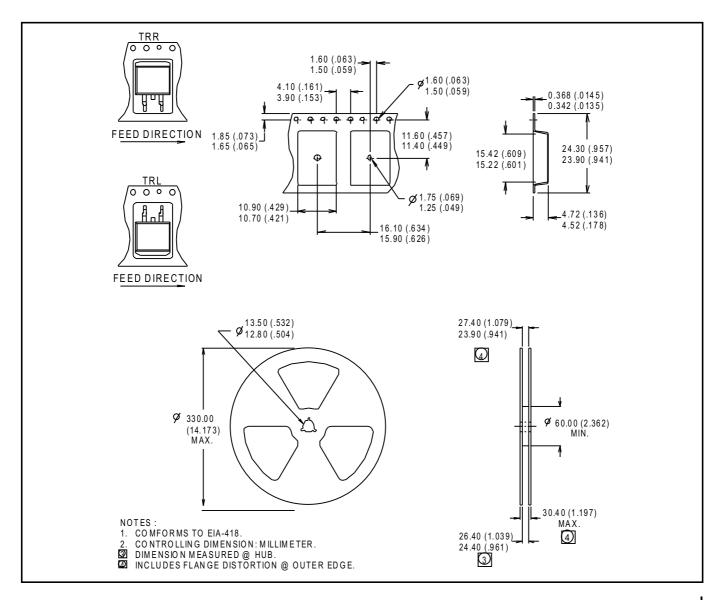
D²Pak Package Outline



Part Marking Information D²Pak



Package Outline


TO-262 Outline

Part Marking Information TO-262

Tape & Reel Information D²Pak

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 8/97

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/