

DATA SHEET

LOW OHMIC CHIP RESISTORS

RL series

5%, 2%, 1% sizes 0402/0603/0805/1206/

1210/1218/2010/2512

RoHS compliant

YAGEO Phicomp

RL

SCOPE

This specification describes RL0402 to RL2512 low ohmic chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- Converters
- Printer equipment
- Server board
- Telecom
- Consumer

FEATURES

- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes
 - Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Low resistances applied to current sensing
- Halogen Free Epoxy

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

RL XXXX X X X XX XX XXX L (1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0402 / 0603 / 0805 / 1206 / 1210 / 1218 / 2010 / 2512

(2) TOLERANCE

 $F = \pm 1\%$

 $G = \pm 2\%$

 $J = \pm 5\%$

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

10 = 10 inch dia. Reel

13 = 13 inch dia. Reel

(6) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

(7) OPTIONAL CODE

L = optional symbol (Note)

H = Halogen / Lead free (special code on request)

Resistance rule of global part number

Resistance code rule	e Example
ORXXX (I to 976 mΩ)	$0RI = 0.1 \Omega$ $0RI2 = 0.12 \Omega$ $0RI05 = 0.105 \Omega$
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	$10R = 10 \Omega$ $97R6 = 97.6 \Omega$
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 KΩ)	IK = 1,000 Ω 9K76 = 9760 Ω
XMXX (1 to 9.76 MΩ)	$IM = 1,000,000 \Omega$ $PM76 = 9,760,000 \Omega$

ORDERING EXAMPLE

The ordering code of a RL0603 chip resistor, value 0.56 Ω with ±1% tolerance, supplied in 7-inch tape reel is: RL0603FR-070R56 (L).

NOTE

- I. All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / 12NC can be added (both are on customer request)
- 3. Comply Halogen Free Epoxy

RL

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

12NC CODE

2350 / 2390 / 2322 XXX XXXXX L

(2)

	(.)		,				
SIZE	TYPE	START IN ⁽¹⁾	TOL.	RESISTANCE RANGE	EMBOSSED (2) TAPE ON REEL	PAPER/PE (A	
		IIN \ /	(%)	KANGE	4,000	5,000	10,000
0402	LRC31	2350	±5%	0.05 to I Ω	-	-	513 20xxx
	LRC32	2350	±1%	0.05 to I Ω	-	-	513 22xxx
0603	LRC21	2350	±5%	0.01 to 1 Ω	-	512 10xxx	-
	LRC22	2350	±1%	0.01 to 1 Ω	-	512 12xxx	-
0805	LRCII	2350	±5%	0.01 to 1 Ω	-	511 10xxx	-
	LRC12	2350	±1%	0.01 to 1 Ω	-	511 12xxx	-
1206	LRC01	2350	±5%	0.01 to 1 Ω	-	510 10xxx	-
	LRC02	2350	±1%	0.01 to 1 Ω	-	510 12xxx	-
1210	LPRC101	2390	±5%	0.01 to 0.0976 Ω	-	735 90xxx	-
	LPRC101	2390	±5%	0.1 to 1 Ω	-	735 60xxx	-
	LPRC102	2390	±1%	0.01 to 1 Ω	-	735 3xxx	-
1218	LPRC201	2322	±5%	0.01 to 1 Ω	735 64xxx	-	-
	LPRC201	2322	±1%	0.01 to 1 Ω	735 7xxx	-	-
2010	LPRCIII	2322	±5%	0.01 to 0.0976 Ω	760 90xxx	-	-
	LPRCIII	2322	±5%	0.1 to 1 Ω	760 60xxx	-	-
	LPRCIII	2322	±1%	0.01 to 0.0976 Ω	761 90xxx	-	-
	LPRCIII	2322	±1%	0.1 to 1 Ω	761 6xxxx	-	-
2512	LPRC221	2322	±5%	0.01 to 0.0976 Ω	762 90xxx	-	-
	LPRC221	2322	±5%	0.1 to 1 Ω	762 60xxx	-	-
	LPRC221	2322	±1%	0.01 to 0.0976 Ω	763 90xxx	-	-
	LPRC221	2322	±1%	0.I to I Ω	763 6xxxx	-	_

- (1) The resistors have a 12-digit ordering code starting with 2350/2390/2322.
- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging. (In 12NC code, only 07" tape reel code is supplied. Supply of 10"/13" tape reel is requested in Global part number ordering code.)
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" is optional symbol (Note).

"H" is Halogen / Lead free (special code on request).

Last digit of 12N	C
-------------------	---

Resistance decade (3)	Last digit
0.01 to 0.0976 Ω	0
0.I to 0.976 Ω	7
I to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
I to 9.76 $k\Omega$	2
10 to 97.6 kΩ	3
100 to 976 kΩ	4
I to 9.76 MΩ	5
10 to 97.6 MΩ	6

Example:	0.02 Ω	=	0200 or 200
	0.3 Ω	=	3007 or 307
	ΙΩ	=	1008 or 108
	33 k Ω	=	3303 or 333
	10 MΩ	=	1006 or 106

ORDERING EXAMPLE

The ordering code of a RL0603 chip resistor, value 0.56 Ω with ±1% tolerance, supplied in tape of 5,000 units per reel is: 2350512125609(L) or RL0603FR-070R56(L).

NOTE

- I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / 12NC can be added (both are on customer request)
- 3. Comply Halogen Free Epoxy

RL

MARKING

RL0805 / RL1206 / RL1210 /RL1218 / RL2010 / RL2512

E-24 series / Non-series (R= $25/40/50/60/250/400/500 \text{ m}\Omega$): 4 digits

The "R" is used as a decimal point; the other 3 digits are significant.

RL0603: R \geq 100 m Ω IN E-24 SERIES, R = 10/20/30/40/50/60 m Ω

3 digits

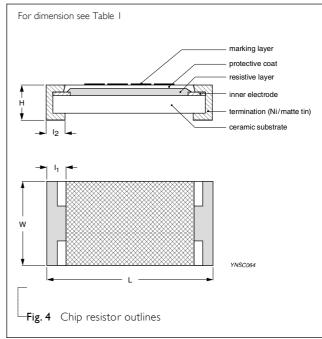
Fig. 2 Value = $22 \text{ m}\Omega$

The "R" is used as a decimal point; the other 2 digits are significant.

RL0402 / RL0603: R<100 mΩ EXCEPT 10/20/30/40/50/60 mΩ

No marking

For further marking information, please see special data sheet "Chip resistors marking".


CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the resistance value. Finally, the two external terminations (matte tin) are added. See fig. 4.

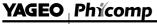

DIMENSIONS

Table	Table I For outlines see fig. 4						
TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)		
RL0402	1.00 ±0.10	0.50 ±0.05	0.35 ±0.05	0.20 ±0.10	0.25 ±0.10		
RL0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15		
RL0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20		
RL1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20		
RL1210	3.10 ±0.10	2.60 ±0.15	0.55 ±0.10	0.50 ±0.20	0.50 ±0.20		
RL1218	3.05 ±0.15	4.60 ±0.20	0.55 ±0.10	0.45 ±0.25	0.50 ±0.25		
RL2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20		
RL2512	6.35 ±0.10	3.20 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20		

OUTLINES

Chip Resistor Surface Mount RL SERIES 0402 to 2512 (RoHS Compliant)

ELECTRICAL CHARACTERISTICS

Table 2

	resistance Range	TEMPERATURE COEFFICIENT OF RESISTANCE								
PI 0402	50mΩ≤R <iω< th=""><th></th><th></th><th></th><th></th><th>50mΩ</th><th>2≤R<iω< th=""><th></th><th></th><th></th></iω<></th></iω<>					50mΩ	2≤R <iω< th=""><th></th><th></th><th></th></iω<>			
NLO402	20m225K<177					±800	ppm/°C			
RL0603	10mΩ≤R<1Ω	I0mΩ≤R≤36	śmΩ	36	mΩ <r< th=""><th>.≤9ImΩ</th><th></th><th>91mΩ<f< th=""><th>R≤500mΩ</th><th>$500m\Omega < R < I\Omega$</th></f<></th></r<>	.≤9ImΩ		91mΩ <f< th=""><th>R≤500mΩ</th><th>$500m\Omega < R < I\Omega$</th></f<>	R≤500mΩ	$500m\Omega < R < I\Omega$
	10m\2 <u>S</u> R<1\2	±1,500 ppm	n/°C	±	ر 200,	opm/°C		±800	opm/°C	±300 ppm/°C
		I0mΩ≤R≤I8mΩ	I8mΩ <r< th=""><th>≤47mΩ</th><th>47m9</th><th>Ω<r≤91mω< th=""><th>91mΩ<</th><th>R≤360mΩ</th><th>360mΩ<r≤500mω< th=""><th>500mΩ<r<iω< th=""></r<iω<></th></r≤500mω<></th></r≤91mω<></th></r<>	≤47mΩ	47m9	Ω <r≤91mω< th=""><th>91mΩ<</th><th>R≤360mΩ</th><th>360mΩ<r≤500mω< th=""><th>500mΩ<r<iω< th=""></r<iω<></th></r≤500mω<></th></r≤91mω<>	91mΩ<	R≤360mΩ	360mΩ <r≤500mω< th=""><th>500mΩ<r<iω< th=""></r<iω<></th></r≤500mω<>	500mΩ <r<iω< th=""></r<iω<>
RL0805		±1,500 ppm/°C	±1,200 p	pm/°C	±1,0	00 ppm/°C	±600	ppm/°C	±300 ppm/°C	±200 ppm/°C
RL1206	10m 0 <p<10< th=""><th>±1,500 ppm/°C</th><th>±1,200 p</th><th>pm/°C</th><th>±1,0</th><th>00 ppm/°C</th><th>±600</th><th>ppm/°C</th><th>±300 ppm/°C</th><th>±200 ppm/°C</th></p<10<>	±1,500 ppm/°C	±1,200 p	pm/°C	±1,0	00 ppm/°C	±600	ppm/°C	±300 ppm/°C	±200 ppm/°C
RL1210	10mΩ≤R<1Ω	±1,500 ppm/°C	±1,000 p	pm/°C	±80	00 ppm/°C	±600	ppm/°C	±300 ppm/°C	±200 ppm/°C
RL2010		±1,500 ppm/°C	±1,200 p	pm/°C	±1,0	00 ppm/°C	±600	ppm/°C	±300 ppm/°C	±200 ppm/°C
RL2512		±1,500 ppm/°C	±1,200 p	pm/°C	±80	00 ppm/°C	±600	ppm/°C	±300 ppm/°C	±200 ppm/°C
RIIZIR	10m0 <p<10< th=""><th>I0mΩ≤R≤30mΩ</th><th>2 30m</th><th>Ω<r≤56< th=""><th>mΩ</th><th>56mΩ<r≤< th=""><th>180mΩ</th><th></th><th>180mΩ<r<1ω< th=""><th>!</th></r<1ω<></th></r≤<></th></r≤56<></th></p<10<>	I0mΩ≤R≤30mΩ	2 30m	Ω <r≤56< th=""><th>mΩ</th><th>56mΩ<r≤< th=""><th>180mΩ</th><th></th><th>180mΩ<r<1ω< th=""><th>!</th></r<1ω<></th></r≤<></th></r≤56<>	mΩ	56mΩ <r≤< th=""><th>180mΩ</th><th></th><th>180mΩ<r<1ω< th=""><th>!</th></r<1ω<></th></r≤<>	180mΩ		180mΩ <r<1ω< th=""><th>!</th></r<1ω<>	!
RLI2I8 0mΩ≤R< Ω -	±2,000 ppm/°C	±1,0)00 ppm	/°C	±700 pp	m/°C	·	±250 ppm/°C		

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	RL0402	RL0603	RL0805	RL1206	RL1210	RL1218	RL2010	RL2512
Paper taping reel (R)	7" (178 mm)	10,000	5,000	5,000	5,000	5,000			
	10" (254 mm)	20,000	10,000	10,000	10,000	10,000			
	13" (330 mm)	50,000	20,000	20,000	20,000	20,000			
Embossed taping reel (K)	7" (178 mm)						4,000	4,000	4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATINGTEMPERATURE RANGE

Range: -55 °C to +125 °C

POWER RATING

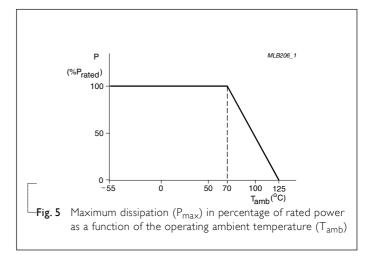
Each type rated power at 70 °C:

RL0402=1/16 W; RL0603=1/10 W; RL0805=1/8 W; RL1206=1/4 W; RL1210=1/2 W; RL1218=1 W;

RL2010=3/4 W; RL2512=1 W.

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST METHOD	PROCEDURE	REQUIREMENTS
MIL-STD-202G-method 108A IEC 60115-1 4.25.1 JIS C 5202-7.10	I,000 hours at 70±5 °C applied RCWV I.5 hours on, 0.5 hour off, still air required	±2%
MIL-STD-202G-method 108A IEC 60115-1 4.25.3 JIS C 5202-7.11	I,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: I25±3 °C	±1%
MIL-STD-202G-method 106F IEC 60115-1 4.24.2	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±2%
	Parts mounted on test-boards, without	
	Measurement at 24±2 hours after test conclusion	
MIL-STD-202G-method 107G	-55/+125 °C	±1%
	Note: Number of cycles required is 300, Devices unmounted	
	Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
MIL-R-55342D-para 4.7.5	2.5 times RCWV or maximum overload voltage	±2%
IEC60115-1 4.13	whichever is less for 5 sec at room temperature	No visible damage
IEC60115-1 4.33	Device mounted on PCB test board as described,	±1%
	,	No visible damage
	· ·	
	Bending time: 60±5 seconds Ohmic value checked during bending	
	MIL-STD-202G-method 108A IEC 60115-1 4.25.1 JIS C 5202-7.10 MIL-STD-202G-method 108A IEC 60115-1 4.25.3 JIS C 5202-7.11 MIL-STD-202G-method 106F IEC 60115-1 4.24.2 MIL-STD-202G-method 107G MIL-STD-202G-method 107G	MIL-STD-202G-method 108A IEC 60115-1 4.25.1 JIS C 5202-7.10 MIL-STD-202G-method 108A IEC 60115-1 4.25.3 JIS C 5202-7.11 MIL-STD-202G-method 106F IEC 60115-1 4.24.2 MIL-STD-202G-method 107G MIL-STD-202G-method 106F Measurement at 24±2 hours after test conclusion MIL-STD-202G-method 107G MIL-STD-202G-method 107G MIL-STD-202G-method 106F Measurement at 24±2 hours after test conclusion MIL-STD-202G-method 107G MIL-STD-202G-method 106F Measurement at 24±2 hours after test conclusion MIL-STD-202G-method 107G MIL-STD-202G-method 107G MIL-STD-202G-method 106F Measurement at 24±2 hours after test conclusion MIL-STD-202G-method 107G Measurement at 24±2 hours after test conclusion MIL-STD-202G-method 107G Measurement at 24±2 hours after test conclusion MIL-STD-202G-method 107G Measurement at 24±2 hours after test conclusion Measurement at 25±6 °C

Chip Resistor Surface Mount RL SERIES 0402 to 2512 (RoHS Compliant)

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	IPC/JEDECJ-STD-002B test B IEC 60068-2-58	Electrical Test not required Magnification 50X SMD conditions: Ist step: method B, aging 4 hours at 155 °C dry heat 2nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage
- Leaching	IPC/JEDECJ-STD-002B test D IEC 60068-2-58	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to Soldering Heat	MIL-STD-202G-method 210F IEC 60068-2-58	Condition B, no pre-heat of samples. Leadfree solder, 270 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	±1% No visible damage

Chip Resistor Surface Mount RL SERIES 0402 to 2512 (RoHS Compliant)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 4	Dec 11, 2008	-	- Halogen Free Epoxy
			- Update global part number definition
Version 3	Aug 07, 2008	-	- Change to dual brand datasheet that describe RL0402 to RL2512 with RoHS compliant
			- Define global part number
Version 2	Jul 15, 2005	-	- Ordering example revised
Version I	Apr 15, 2005	-	- Size 1218 extended
			- Test method and procedure updated
			- PE tape added (paper tape will be replaced by PE tape)
Version 0	Nov. 10, 2003	-	- First issue of this specification

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."