SONY. CXK58257AP/ASP/AM -70L/10L/12L *

32768-word × 8-bit High Speed CMOS Static RAM

Description

CXK58257AP/ASP/AM is 262,144 bits high speed CMOS static RAM organized as 32,768 words by 8 bits and operates from a single 5V supply. This device is suitable for use in high speed and low power applications in which battery back up for nonvolatility is required.

* 300mil DIP covers only L-version.

Features

- Fast access time: (Access time)
 CXK58257AP/ASP/AM-70L, 70LL 70ns(Max.)
 CXK58257AP/ASP/AM-10L, 10LL 100ns(Max.)
 CXK58257AP/ASP/AM-12L, 12LL 120ns(Max.)
- Low power operation:

CXK58257AP/AM-70LL, 10LL, 12LL;

Standby : 1 μ W (Typ.) Operation : 15mW (Typ.)

CXK58257AP/ASP/AM-70L, 10L, 12L;

Standby : 2.5 µW (Typ.) Operation : 15mW (Typ.)

- Single + 5V supply: +5V ± 10 %
- Fully static memory...No clock or timing

strobe required

- Equal access and cycle time
- Common data input and output:

three state output

• Directly TTL compatible:

All inputs and outputs

- Low voltage data retention : 2.0V (Min.)
- Available in 28 pin 600mil DIP, 300mil DIP and 450mil SOP

Function

32768-word × 8-bit static RAM

Structure

Silicon gate CMOS IC

Pin Description

	<u> </u>
Symbol	Description
A0 to A14	Address input
V∕01 to V∕08	Data input/output
CĒ	Chip enable input
WE	Write enable input
ŌĔ	Output enable input
Vcc	+5V power supply
GND	Ground

E90447B46 - ST

CXK58257AP/ASP/AN

Absolute Maximum Ratings

 $(Ta = 25 \,^{\circ}\text{C}, \, GND = 0V)$

Item		Symbol	Rating	Unit		
Supply voltage	V∞		Vcc		-0.5 to +7.0	V
Input voltage	Vin		Vin		$-0.5*$ to $V\infty + 0.5$	V
Input and output voltage	V _L ⁄o		-0.5* to Vcc+0.5	V		
		CXK58257AP/ASP	1.0			
Allowable power dissipation	Po	CXK58257AM	0.7	W		
Operating temperature	Тор	or	0 to +70	ొర		
Storage temperature	Tstg		Tstg		-55 to +150	°C
Soldering temperature	Tsolder		260 • 10	℃ • sec		

^{*} VIN, $V_{1/0} = -3.0V$ Min. for pulse width less than 50ns.

Truth Table

CE	ÖĒ	WE	Mode	I/01 to I/08	Vcc Current
Η	×	×	Not selected	High Z	ISB1, ISB2
L	H	Н	Output disable	High Z	(oc1, loc2
L	L	Н	Read	Data out	loci, loca
L	×	Г	Write	Data in	lcc1, lcc2

X: "H" or "L"

DC Recommended Operating Conditions (Ta = 0 to + 70 °C, GND = 0V)

Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Voc	4.5	5.0	5.5	V
Input high voltage	V _{IH}	2.2		V∞+0.3	٧
Input low voltage	Vı∟	- 0.3*		0.8	V

^{*} $V_{IL} = -3.0V$ Min. for pulse width less than 50ns.

CXK58257AP/ASP/AM

Electrical Characteristics

DC and operating characteristics

 $(Vcc = 5V \pm 10\%, GND = 0V, Ta = 0 to + 70\%)$

Item	Sumbal	nbol Test conditions		- 70	DL/10L/	12L	- 70L	Unit		
Item	Item Symbol		LIOIIS	Min.	Тур.*	Max.	Min.	Тур.*	Max.	Unit
Input leakage current	lu l	V _{IN} = GND to V ₀	x	- 0.5		0.5	- 0.5	—	0.5	μΑ
Output leakage current	1LO	$\overline{CE} = V_{IH} \text{ or } \overline{OE} = V_{I/O} = GND \text{ to } V_{I/O} = G$		- 0.5		0.5	- 0.5		0.5	μΑ
Operating		$\overline{CE} = V_{iL}, V_{iN} = V_{iDUT} = 0$ mA	н or V _{IL} ,		3	10		3	10	
current	l lcc1	CE ≤ 0.2V V _{IN} ≤ 0.2V or ≥ V∞ - 0.2V			1	5		1	5	Αm
Average	lcc2		70L/70LL		30	50		30	50	mA
operating			10L/10LL		23	50		23	50	
current		lout = 0mA	12L/12LL		20	50		20	50	
			0 to 70℃			25	_	_	5	
Standby	lsB1	<u>CE</u> ≧ V _∞ – 0.2V	0 to 40℃			5			1	μΑ
current			25℃		0.5	2		0.2	0.5	
	18B2	CE = V _{IH}			0.4	2		0.4	2	mΑ
Output high voltage	Voн	Iон = - 1.0mA		2.4			2.4			٧
Output low voltage	VoL	I _{OL} = 2.1 mA				0.4			0.4	٧

^{*} Vcc = 5V, Ta = 25 ℃

I/O capacitance

 $(Ta = 25 \, \%, f = 1 \, MHz)$

<u> </u>					
ltem	Symbol	Test conditions	Min.	Max.	Unit
Input capacitance	CiN	V _{IN} = 0V		6	ρF
1/0 capacitance	Cı/o	V _I ∕0 = 0V		8	pF

Note) This parameter is sampled and is not 100% tested.

SONY CXK58257AP/ASP/AM

AC characteristics • AC test conditions

 $(Vcc = 5V \pm 10 \%, Ta = 0 to + 70 \%)$

	Conditions				
Input pulse	high level	V _{IH} = 2.2V			
Input pulse	low level	V _{IL} = 0.8V			
Input rise tir	me	tr = 5ns			
Input fall tir	ne	tf = 5ns			
input and or reference lev		1.5V			
Output load	10L/10LL/12L/ 12LL	C _L *= 100pF, 1TTL			
conditions	70L/70LL	C _L *= 30pF, 1TTL			

* CL includes scope and jig capacitances.

CXK58257AP/ASP/AM

• Read cycle

Item	Symbol	-70L/70LL		-10L/10LL		-12L/12LL		l late
(16(1)	Symbol	Min.	Мах.	Min.	Max.	Min.	Max.	Unit
Read cycle time	tac	70	—	100		120		ns
Address access time	taa	—	70		100		120	ns
Chip enable access time	t∞		70		100		120	ns
Output enable to output valid	toe	—	35		50		60	ns
Output hold from address change	ton	20		20		20	_	ns
Chip enable to output in low Z (CE)	tLZ	10		10		10		ns
Output enable to output in low Z (OE)	toLz	5		5	<u> </u>	5		ns
Chip disable to output in high Z (CE)	tHZ*	0	30	0	30	0	30	ns
Chip disable to output in high Z (OE)	tonz*	0	30	0	30	0	30	ns

^{*} the and tone are defined as the time required for outputs to turn to high impedance state and are not referred to as output voltage levels.

• Write cycle

ltem	Symbol	-70L/70LL		-10L/10LL		-12L/12LL		11-14
item	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write cycle time	twc	70		100		120		ns
Address valid to end of write	taw	65		80		100		ns
Chip enable to end of write	tcw	65		80		100		ns
Data to write time overlap	tow	30	<u> </u>	35	<u> </u>	40		ns
Data hold from write time	toH	0		0		0		ns
Write pulse width	twp	50		60	·—	70		ns
Address setup time	tas	0		0	—	0		ns
Write recovery time (WE)	twe	0		0		0		ns
Write recovery time (CE)	twn1	0		0	—	0		ns
Output active from end of write	tow	10		10		10		ns
Write to output in high Z	twnz*	0	25	0	25	0	25	ns

^{*} twnz is defined as the time required for outputs to turn to high impedance state and is not referred to as output voltage level.

CXK58257AP/ASP/AM

Timing Waveform

• Read cycle (1) : $\overline{CE} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$

• Read cycle (2): WE = VIH

• Write cycle (1): WE control

SONY CXK58257AP/ASP/AM

• Write cycle (2): CE control

During I/O pins are in the output state, the data input signals of opposite phase to the output must not be applied.

Data Retention Characteristics

 $(Ta = 0 \text{ to } 70^{\circ}C)$

								(TG	0 10	,,,,
Item	Symbol	Test conditions		-1	70L/10L/	12L	- 70	Unit		
I (e)))	Symbol	1851 C	Onditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Onit
Data retention voltage	VDR	CE ≥ Vcc - 0.2V		2.0		5.5	2.0		5.5	V
	Iccor1		Ta = 0 to 70°C			10			3	
Data retention		<u>Vc</u> c = 3.0V <u>CE</u> ≧ 2.8V	Ta = 0 to 40℃			2			0.6	μΑ
current			25℃	_	0.25	1		0.1	0.3	
	Iccor2	Vcc = 2.0 to 5.5V CE ≧ Vcc - 0.2V			0.5	25	_	0.2	5	μА
Data retention setup time	topas	Chip disable to data retention mode		0			0			ns
Recovery time	tR			trc*	_		trc*			ns

^{*} t_{RC}: Read cycle time

Data retention waveform

SONY CXK58257AP/ASP/AN

Example of Representative Characteristics

Supply current vs. Supply voltage

Supply current vs. Frequency

Access time vs. Supply voltage

Supply current vs. Ambient temperature

Ta - Ambient temperature (°C)

Access time vs. Load capacitance

Access time vs. Ambient temperature

Ta - Ambient temperature (℃)

Standby current vs. Supply voltage

input voltage level vs. Supply voltage

Output high current vs. Output high voitage

Standby current vs. Ambient temperature

Standby current vs. Ambient temperature

Output low current vs. Output low voltage

SONY CXK58257AP/ASP/AM

Package Outline Unit: mm

